References
[1] Ì. Reed and B. Simon, Methods of modern mathematical physics. III: ScatteringTheory. Academic Press, Inc., 1979.

[2] D.R. Yafaev, Mathematical Scattering Theory: General Theory. Transl. of Math.Monographs, 105, AMS, Providence, RI, 1992.

[3] H. Baumgartel and M. Wollenberg, Mathematical Scattering Theory. Math. Text-books and Monogr., vol. 59, Part II; Mathem. Monogr., Akademie-Verlag, Berlin,1983. CrossRef

[4] V.A. Marchenko, SturmLiouville Operators and Applications. AMS Chelsea Pub-lishing, Revised edition, 2011. CrossRef

[5] L.D. Faddeev, The Inverse Problem in the Quantum Theory of Scattering. J.Math. Phys. 4 (1963), 72104. CrossRef

[6] C. Shadan and P. Sabatier, Inverse Problems in Quantum Scattering Theory,Springer, 1989.

[7] B.M. Levitan, Inverse Sturm Liouville Problems. VMU Science Press, Utrecht, 1987.

[8] J.F. Brasche, M.M. Malamud, and H. Neidhardt, Weyl Function and Spectral Prop-erties of Self-Adjoint Extensions. Integr. Eqs., Oper. Theory 43 (2002), No. 3,264289.

[9] J.F. Brasche, M.M. Malamud, and H. Neidhardt, Scattering Theory for Open Quan-tum Systems with Finite Rang Coupling. Math. Phys., Anal., Geom. 10 (2007),331358.

[10] J.F. Brasche, M.M. Malamud, and H. Neidhardt, Scattering Matrices and WeylFunctions. Proc. London Math. Soc. 97 (2008), No. 3, 568598.

[11] R. Tiedra de Aldecoa, Time Delay for Dispersive Systems in Quantum ScatteringTheory. Rev. Math. Phys. 21 (2009), No. 5, 675708.

[12] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions inAnalysis. Oliver & Boyd, 1965.

[13] N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert Space, vol.2, 3rd ed. Boston, Mass. London, Pitman (Advanced Publishing Program), 1981.

[14] J.B. Garnett, Bounded Analytic Functions (Graduate Texts in Mathematics).Springer, New York, 2006.

[15] P. Koosis, Introduction to Hp Spaces. Cambridge University Press, Vol. 40, Cam-bridge, 1980.

[16] F.D. Gahov, Boundary Problems. Ì. Fiz.-mat. lit., 1977. (Russian)

[17] I.C. Gohberg and M.G. Krein, Introduction to the Theory of Linear NonselfadjointOperators in Hilbert Space. Vol. 18. AMS, 1969.

[18] M.G. Krein, On the Trace Formula in Perturbation Theory. Mat. Sb. (N.S.),33(75):3 (1953), 597626. (Russian)

[19] M. Anthea Grubb and D.B. Pearson, Derivation of the Wave and Scattering Oper-ators for Interactions of Rank One. J. Math. Phis. 11 (1970), 24152424. CrossRef

[20] J. Kellendonk and S. Richard, On the Structure of the Wave Operators in One-Dimensional Potential Scattering. Math. Phys. Electron. J. 14 (2008), 1321.

[21] S. Richard and R. Tiedra de Aldecoa, New Formulae for the Wave Operators for aRank One Interaction. Integr. Equation, Oper. Theory 66 (2010), No. 2, 283292.