References
[1] N.S. Bakhvalov and G.N. Panasenko, Averaging Processes in Periodic Media. Math-ematical Problems in the Mechanics of Composite Materials. Nauka, Moscow, 1984.(Russian)

[2] A. Beliaev, Homogenization of a Parabolic Operator with Signorini Boundary Con-ditions in Perforated Domains. — Asymptot. Anal. 40 (2004), 255–268.

[3] A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic Analysis for PeriodicStructures. North-Holland Publishing Company, Amsterdam–New York–Oxford,1978.

[4] L.V. Berlyand and M.V. Goncharenko, Homogenization of the Diﬀusion Equationin Porous Media with Absorptions. — Teor. Funkts., Func. Analis i ikh Prilozhen.52 (1989), 112–121. (Russian)

[5] B. Cabarrubias and P. Donato, Homogenization of a Quasilinear Elliptic Problemwith Nonlinear Robin Boundary Condition. — Appl. Anal.: An Intern. J. 91 (2012),No. 6, 1111–1127.

[6] B. Calmuschi and C. Timofte, Upscaling of Chemical Reactive Flows in Porous Me-dia. ¡¡Caius Iacob¿¿ Conference on Fluid Mechanics and Texnical Appl., Bucharest(2005), 1–9.

[7] D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures.Applied Mathematical Scienses, 136, Springer-Verlag, New York, 1999.

[8] D. Cioranescu and P. Donato, Homogenesation du Proble‘me de Neumann nonHomoge‘ne dans des Ouverts Perfores. — Asymptot. Anal. 1 (1988), 115–138.

[9] D. Cioranescu, P. Donato, and R. Zaki, The Periodic Unfolding and Robin Prob-lems in Perforated Domains. — C.R.A.S. Paris, Ser. 1 342 (2006), 467–474.

[10] C. Conca, J. Diaz, and C. Timofte, Eﬀective Chemical Processes in Porous Media.— Math. Models and Methods Appl. Sci. 13 (2003), No. 10, 1437–1462.

[11] C. Conca, J. Diaz, A. Linan, and C. Timofte, Homogenization in Chemical ReactiveFloes. — Electron. J. Diﬀ. Eq. 40 (2004), 1–22.

[12] M.V. Goncharenko and L.A. Khilkova, Homogenized Model of Diﬀusion in PorousMedia with Nonlinear Absorption at the Boundary. — Ukr. Matem. Zhurn. 67(2015), No. 9, 1201–1216. (Russian)

[13] M.V. Goncharenko and L.A. Khilkova, Homogenized Model of Diﬀusion in a Locally-Periodic Porous Media with Nonlinear Absorption at the Boundary. — DopovidiNANU 10 (2016), No. 6. (Russian)

[14] K. Iosida, Functional Analysis. Mir, Moscow, 1967. (Russian)

[15] A.N. Kolmogorov and S.V. Fomin, Elements of the Theory of Functions and Func-tional Analysis. Fizmatlit, Moscow, 2004. (Russian)

[16] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluid.Nauka, Moscow, 1970. (Russian)

[17] O.A. Ladyzhenskaya, V.A. Solonnikov, and N.N. Ural’tseva, Linear and QuasilinearEquations of Parabolic Type. Nauka, Moscow, 1967. (Russian)

[18] V.A.MarchenkoandE.Ya.Khruslov,HomogenizedModelsofMicro-Inhomogeneous Media. Naukova dumka, Kiev, 2005. (Russian)

[19] V.G. Maz’ya, Sobolev Spaces. Izdatel’stvo LGU, Leningrad, 1985. (Russian)

[20] T.A. Mel’nyk and D.Yu. Sadovyy, Homogenization of Quasilinear Parabolic Problemwith Diﬀerent Nonlinear Boundary Conditions Fourier Alternating in a Thick Two-Level Junction of the Type 3:2:2. — Ukr. Matem. Zhurn. 63 (2011), No. 12, 1632–1656. (Ukrainian)

[21] T.A. Mel’nyk and O.A. Sivak, Asymptotic Analysis of a Boundary-Value Problemwith the Nonlinean Multiphase Interactions in a Perforated Domain. — Ukr. Matem.Zhurn. 61 (2009), No. 4, 494–512.

[22] T.A. Mel’nyk and O.A. Sivak, Asymptotic Analysis of a Parabolic Semilinear Prob-lem with the Nonlinean Boundary Multiphase Interactions in a Perforated Domain.— J. Math. Sci. 164 (2010), No. 3, 1–27.

[23] T.A. Mel’nyk and O.A. Sivak, Asymptotic Approximations for Solutions to Quasi-linear and Linear Parabolic Problems with Diﬀerent Perturbed Boundary Conditionsin Perforated Domains. — J. Math. Sci. 177 (2011), No. 1, 50–70.

[24] O.A. Oleinik, G.A. Yosiﬁan, and A.S. Shamaev, Mathematical Problems in theTheory of Strongly Inhomogeneous Elastic Media. Izdatel’stvo MGU, Moscow, 1990.(Russian)

[25] A. Pankov, G-Convergence and Homogenization of Nonlinear Partial DiﬀerentialOperators. Kluwer Academic Publishers, Dordrecht–Boston–London, 1997. CrossRef

[26] A.L. Piatnitski, G.A. Chechkin, and A.S. Shamaev, Homogenization: Methods andApplications. Tamara Rozhkovskaya Press, Novosibirsk, 2007. (Russian)

[27] A. Piatnitski and V. Rybalko, Homogenization of Boundary Value Problems forMonotone Operators in Perforated Domains with Rapidly Oscillating BoundaryConditions of Fourier Type. — J. Math. Sci. 177 (2011), No. 1, 109–140.

[28] E. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory. Lecture Notesin Physics 127. Springer-Verlag, New York, 1980.

[29] R.E. Showalter, Monotone Operators in Banach Space and NonlinearPartial Diﬀer-ential Equations. AMS, Providence, 1997.

[30] L. Tartar, The General Theory of Homogenization. A Personalized Introduction.Springer, Heidelberg–Dordrecht–London–New York, 2009.

[31] C. Timofte, Homogenization in Nonlinear Chemical Reactive Flows. Proc. of the9th WSEAS Intern. Conference on Appl. Math., Istambul (2006), 250–255.

[32] C. Timofte, On the Homogenization of a Climatization Problem. — Studia Univ.¡¡Babes-Bolyai¿¿ LII (2007), No. 2, 117–125.

[33] C. Timofte, Multiscale Analysis of Ionic Transport in Periodic Charged Media. —Biomath 2 (2013), No. 2, 1–5.

[34] C. Timofte, N. Cotfas, and G. Pavel, On the Asymptotic Behaviour of Some EllipticProblems in Perforated Domains. Romanian Reports in Phys. 64 (2012), No. 1, 5–14.

[35] V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Diﬀerential Oper-ators. Fizmatlit, Moscow, 1993. (Russian)