References
[1] S.M. Bak, Traveling waves in chains of oscillators, Mat. Stud. 26 (2006), 140–153 (Ukrainian).

[2] S.M. Bak, Periodic traveling waves in chains of oscillators, Commun. Math. Anal. 3 (2007), 19–26.

[3] S.M. Bak, Existence of periodic traveling waves in a system of nonlinear oscillators on a two-dimensional lattice, Mat. Stud. 35 (2011), 60–65 (Ukrainian).

[4] S.M. Bak, Existence of periodic traveling waves in the Fermi–Pasta–Ulam system on a two-dimensional lattice, Mat. Stud. 37 (2012), 76–88 (Ukrainian).

[5] S.M. Bak, Periodic traveling waves in the discrete sine-Gordon equation on 2D- lattice, Mat. Komp. Model. Ser.: Fiz.-Mat. Nauky 9 (2013), 5–10 (Ukrainian).

[6] S.M. Bak, Existence of the subsonic periodic traveling waves in the system of nonlin- early coupled nonlinear oscillators on 2D-lattice, Mat. Komp. Model. Ser.: Fiz.-Mat. Nauky 10 (2014), 17–23 (Ukrainian).

[7] S.M. Bak, Existence of the supersonic periodic traveling waves in the system of nonlinearly coupled nonlinear oscillators on 2D-lattice, Mat. Komp. Model. Ser.: Fiz.-Mat. Nauky 12 (2015), 5–12 (Ukrainian).

[8] S.M. Bak, Existence of heteroclinic traveling waves in a system of oscillators on a two-dimensional lattice, Mat. Metodi Fiz.-Mekh. Polya 57 (2014), 45–52 (Ukrainian); Engl. transl.: J. Math. Sci. (N.Y.) 217 (2016), 187–197.

[9] S.N. Bak, Existence of solitary traveling waves for a system of nonlinear cou- pled oscillators on a two-dimensional lattice, Ukra¨ın. Mat. Zh. 69 (2017), 435–444 (Ukrainian); Engl. transl.: Ukrainian Math. J. 69 (2017), 509–520.

[10] S.N. Bak and A.A. Pankov, Traveling waves in systems of oscillators on two- dimensional lattices, Ukr. Mat. Visn. 7 (2010), 154–175 (Ukrainian); Engl. transl.: J. Math. Sci. (N.Y.) 174 (2011), 437–452.

[11] O.M. Braun and Y.S. Kivshar, The Frenkel–Kontorova Model. Concepts, Methods, and Applications. Texts and Monographs in Physics, Springer–Verlag, Berlin, 2004.

[12] M. Feˇ ckan and V. Rothos, Travelling waves in Hamiltonian systems on 2D lattices with nearest neighbour interactions, Nonlinearity 20 (2007), 319–341. CrossRef

[13] G. Friesecke and K. Matthies, Geometric solitary waves in a 2D math-spring lattice, Discrete Contin. Dyn. Syst. Ser. B 3 (2003), 105–114. CrossRef

[14] G. Ioos and K. Kirchg¨ assner, Travelling waves in a chain of coupled nonlinear oscil- lators, Comm. Math. Phys. 211 (2000), 439–464. CrossRef

[15] C.-F. Kreiner and J. Zimmer, Heteroclinic travelling waves for the lattice sine- Gordon equation with linear pair interaction, Discrete Contin. Dyn. Syst. 25 (2009), 915–931. CrossRef

[16] C.-F. Kreiner and J. Zimmer, Travelling wave solutions for the discrete sine-Gordon equation with nonlinear pair interaction, Nonlinear Anal. 70 (2009), 3146–3158. CrossRef

[17] P.-L. Lions, The concentration–compactness principle in the calculus of variations. The locally compact case, I, II, Ann. Inst. H. Poincar´ e Anal. Non Lin´ eaire 1 (1984), 223–283. CrossRef

[18] P.D. Makita, Periodic and homoclinic travelling waves in inﬁnite lattices, Nonlinear Anal. 74 (2011), 2071–2086. CrossRef

[19] A. Pankov, Travelling Waves and Periodic Oscillations in Fermi–Pasta–Ulam Lat- tices. Imperial College Press, London, 2005. CrossRef