References
[1] S.M. Bak, Traveling waves in chains of oscillators, Mat. Stud. 26 (2006), 140–153(Ukrainian).
[2] S.M. Bak, Periodic traveling waves in chains of oscillators, Commun. Math. Anal.3 (2007), 19–26.
[3] S.M. Bak, Existence of periodic traveling waves in a system of nonlinear oscillatorson a two-dimensional lattice, Mat. Stud. 35 (2011), 60–65 (Ukrainian).
[4] S.M. Bak, Existence of periodic traveling waves in the Fermi–Pasta–Ulam systemon a two-dimensional lattice, Mat. Stud. 37 (2012), 76–88 (Ukrainian).
[5] S.M. Bak, Periodic traveling waves in the discrete sine-Gordon equation on 2Dlattice, Mat. Komp. Model. Ser.: Fiz.-Mat. Nauky 9 (2013), 5–10 (Ukrainian).
[6] S.M. Bak, Existence of the subsonic periodic traveling waves in the system of nonlinearly coupled nonlinear oscillators on 2D-lattice, Mat. Komp. Model. Ser.: Fiz.-Mat.Nauky 10 (2014), 17–23 (Ukrainian).
[7] S.M. Bak, Existence of the supersonic periodic traveling waves in the system ofnonlinearly coupled nonlinear oscillators on 2D-lattice, Mat. Komp. Model. Ser.:Fiz.-Mat. Nauky 12 (2015), 5–12 (Ukrainian).
[8] S.M. Bak, Existence of heteroclinic traveling waves in a system of oscillatorson a two-dimensional lattice, Mat. Metodi Fiz.-Mekh. Polya 57 (2014), 45–52(Ukrainian); Engl. transl.: J. Math. Sci. (N.Y.) 217 (2016), 187–197.
[9] S.N. Bak, Existence of solitary traveling waves for a system of nonlinear coupled oscillators on a two-dimensional lattice, Ukraı̈n. Mat. Zh. 69 (2017), 435–444(Ukrainian); Engl. transl.: Ukrainian Math. J. 69 (2017), 509–520.
[10] S.N. Bak and A.A. Pankov, Traveling waves in systems of oscillators on twodimensional lattices, Ukr. Mat. Visn. 7 (2010), 154–175 (Ukrainian); Engl. transl.:J. Math. Sci. (N.Y.) 174 (2011), 437–452.
[11] O.M. Braun and Y.S. Kivshar, The Frenkel–Kontorova Model. Concepts, Methods,and Applications. Texts and Monographs in Physics, Springer–Verlag, Berlin, 2004.
[12] M. Fečkan and V. Rothos, Travelling waves in Hamiltonian systems on 2D latticeswith nearest neighbour interactions, Nonlinearity 20 (2007), 319–341. CrossRef
[13] G. Friesecke and K. Matthies, Geometric solitary waves in a 2D math-spring lattice,Discrete Contin. Dyn. Syst. Ser. B 3 (2003), 105–114. CrossRef
[14] G. Ioos and K. Kirchgässner, Travelling waves in a chain of coupled nonlinear oscillators, Comm. Math. Phys. 211 (2000), 439–464. CrossRef
[15] C.-F. Kreiner and J. Zimmer, Heteroclinic travelling waves for the lattice sineGordon equation with linear pair interaction, Discrete Contin. Dyn. Syst. 25 (2009),915–931. CrossRef
[16] C.-F. Kreiner and J. Zimmer, Travelling wave solutions for the discrete sine-Gordonequation with nonlinear pair interaction, Nonlinear Anal. 70 (2009), 3146–3158. CrossRef
[17] P.-L. Lions, The concentration–compactness principle in the calculus of variations.The locally compact case, I, II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984),223–283. CrossRef
[18] P.D. Makita, Periodic and homoclinic travelling waves in infinite lattices, NonlinearAnal. 74 (2011), 2071–2086. CrossRef
[19] A. Pankov, Travelling Waves and Periodic Oscillations in Fermi–Pasta–Ulam Lattices. Imperial College Press, London, 2005. CrossRef