References
[1] V.F. Brzhechka, On the Bolzano function, Uspekhi Mat. Nauk 4 (1949), 15–21(Russian).

[2] E. Kel’man, Bernard Bolzano, Izd-vo AN SSSR, Moscow, 1955 (Russian).

[3] G.H. Hardy, Weierstrass’s non-differentiable function, Trans. Amer. Math. Soc. 17(1916), 301–325. CrossRef

[4] J. Gerver, More on the differentiability of the Rieman function, Amer. J. Math. 93(1971), 33–41. CrossRef

[5] P. Du Bois-Reymond, Versuch einer Classification der willkürlichen Functionenreeller Argumente nach ihren Aenderungen in den kleinsten Intervallen, J. ReineAngew. Math. 79 (1875), 21–37 (German).

[6] G. Darboux, Mémoire sur les fonctions discontinues, Ann. Sci. École Norm. Sup. 4(1875), 57–112 (French).

[7] G. Darboux, Addition au mémoire sur les fonctions discontinues, Ann. Sci. ÉcoleNorm. Sup. 8 (1879), 195–202 (French).

[8] W. Orlicz, Sur les fonctions continues non dérivables, Fund. Math. 34 (1947), 45–60(French). CrossRef

[9] U. Dini, Fondamenti per la teoretica delle funzioni de variabili reali, Tipografia T.Nistri e C., Pisa, 1878 (Italian).

[10] H. Hankel, Untersuchungen über die unendlich oft oscillirenden und unstetigenFunctionen, Ludwig Friedrich Fues, Tübingen, 1870 (German).

[11] S. Banach, Uber die Baire’sche Kategorie gewisser Funktionenmengen, Studia Math.3 (1931), 174–179 (German). CrossRef

[12] A.S. Besicovitch, Investigation of continuous functions in connection with the question of their differentiability, Mat. Sb. 31 (1924), 529–556 (Russian).

[13] S. Mazurkiewicz, Sur les fonctions non dérivables, Studia Math. 3 (1931), 92–94(French). CrossRef

[14] S. Saks, On the functions of Besicovitch in the space of continuous functions, Fund.Math. 19 (1932), 211–219. CrossRef

[15] K.A. Bush, Continuous functions without derivatives, Amer. Math. Monthly 59(1952), 222–225. CrossRef

[16] G. Cantor, Ueber die einfachen Zahlensysteme, Z. Math. Phys. 14 (1869), 121–128(German).

[17] R. Salem, On some singular monotonic functions which are stricly increasing, Trans.Amer. Math. Soc. 53 (1943), 423–439. CrossRef

[18] S.O. Serbenyuk, On one nearly everywhere continuous and nowhere differentiablefunction, that defined by automaton with finite memory, Naukovyi Chasopys NPUim. M.P. Dragomanova. Ser. 1. Phizyko-matematychni Nauky 13 (2012), 166–182(Ukrainian).Available from: https://www.researchgate.net/publication/292970012

[19] S.O. Serbenyuk, On one nearly everywhere continuous and nowhere differentiablefunction defined by automaton with finite memory, conference abstract (2012)(Ukrainian).Available from: https://www.researchgate.net/publication/311665377

[20] S.O. Serbenyuk, On one nearly everywhere continuous and almost nowhere differentiable function, that defined by automaton with finite memory and preserves theHausdorff-Besicovitch dimension, preprint (2012) (Ukrainian).Available from: https://www.researchgate.net/publication/314409844

[21] S.O. Serbenyuk, On one generalization of functions defined by automatons withfinite memory, conference abstract (2013) (Ukrainian).Available from: https://www.researchgate.net/publication/311414454

[22] S. Serbenyuk, On two functions with complicated local structure, conference abstract (2013).Available from: https://www.researchgate.net/publication/311414256

[23] Symon Serbenyuk, Representation of real numbers by the alternating Cantor series,slides of talk (2013) (Ukrainian).Available from: https://www.researchgate.net/publication/303720347

[24] Symon Serbenyuk, Representation of real numbers by the alternating Cantor series,preprint (2013) (Ukrainian).Available from: https://www.researchgate.net/publication/316787375

[25] Symon Serbenyuk, Defining by functional equations systems of one class of functions,whose argument defined by the Cantor series, conference talk (2014) (Ukrainian).Available from: https://www.researchgate.net/publication/314426236

[26] Symon Serbenyuk, Applications of positive and alternating Cantor series, slides oftalk (2014) (Ukrainian).Available from: https://www.researchgate.net/publication/303736670

[27] S. O. Serbenyuk, Defining by functional equations systems of one class a functions, whose arguments defined by the Cantor series, conference abstract (2014)(Ukrainian).Available from: https://www.researchgate.net/publication/311415359

[28] S. O. Serbenyuk, Functions, that defined by functional equations systems in termsof Cantor series representation of numbers, Naukovi Zapysky NaUKMA 165 (2015),34–40 (Ukrainian).Available from: https://www.researchgate.net/publication/292606546

[29] S.O. Serbenyuk, Nega-Q̃-representation of real numbers, conference abstract (2015).Available from: https://www.researchgate.net/publication/311415381

[30] S.O. Serbenyuk, On one function, that defined in terms of the nega-Q̃-representation, from a class of functions with complicated local structure, conference abstract(2015) (Ukrainian).Available from: https://www.researchgate.net/publication/311738798

[31] S. Serbenyuk, Nega-Q̃-representation as a generalization of certain alternating representations of real numbers, Bull. Taras Shevchenko Natl. Univ. Kyiv Math. Mech.1 (35) (2016), 32–39 (Ukrainian).Available from: https://www.researchgate.net/publication/308273000

[32] S.O. Serbenyuk, On one class of functions that are solutions of infinite systems offunctional equations, preprint (2016), arXiv: 1602.00493

[33] S. Serbenyuk, On one class of functions with complicated local structure, ŠiauliaiMathematical Seminar 11 (19) (2016), 75–88.

[34] Symon Serbenyuk, On one nearly everywhere continuous and nowhere differentiablefunction that defined by automaton with finite memory, preprint (2017), arXiv:1703.02820

[35] S.O. Serbenyuk, Continuous functions with complicated local structure defined interms of alternating Cantor series representation of numbers, Zh. Mat. Fiz. Anal.Geom. 13 (2017), 57–81. CrossRef

[36] S. Serbenyuk, Representation of real numbers by the alternating Cantor series,Integers 17 (2017), Paper No. A15, 27 pp.

[37] K. Weierstrass, Über continuierliche Functionen eines reellen Argumentes, die fürkeinen Werth des letzeren einen bestimmten Differentialquotienten besitzen, Math.Werke 2 (1895), 71–74 (German).

[38] W. Wunderlich, Eine überall stetige und nirgends differenzierbare Funktion, Elemente der Math. 7 (1952), 73–79 (German).