References
[1] A. Boutet de Monvel, I. Egorova, and E. Khruslov, Soliton asymptotics of theCauchy problem solution for the Toda lattice, Inverse Problems 13 (1997), No. 2,223–237.

[2] A.M. Bloch and Y. Kodama, The Whitham Equation and Shocks in the Toda Lattice, Proceedings of the NATO Advanced Study Workshop on Singular Limits ofDispersive Waves held in Lyons, July 1991, Plenum Press, New York, 1994. CrossRef

[3] A.M. Bloch and Y. Kodama, Dispersive regularization of the Whitham equation forthe Toda lattice, SIAM J. Appl. Math. 52 (1992), 909–928. CrossRef

[4] P.F. Byrd and M.D. Friedman, Handbook of Elliptic Integrals for Engineers andPhysicists, Springer, Berlin, 1954. CrossRef

[5] P. Deift, S. Kamvissis, T. Kriecherbauer, and X. Zhou, The Toda rarefaction problem, Comm. Pure Appl. Math. 49 (1996), 35–83. CrossRef

[6] P. Deift, S. Venakides, and X. Zhou, The collisionless shock region for the long timebehavior of solutions of the KdV equation, Comm. Pure and Appl. Math. 47 (1994),199–206. CrossRef

[7] P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann–Hilbertproblems, Ann. of Math. 137 (1993), 295–368. CrossRef

[8] P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, and X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponentialweights and applications to universality questions in random matrix theory, Comm.Pure Appl. Math. 52 (1999), No. 11, 1335–1425.

[9] I. Egorova, The scattering problem for step-like Jacobi operator, Mat. Fiz. Anal.Geom. 9 (2002), No. 2, 188–205.

[10] I. Egorova, Z. Gladka, V. Kotlyarov, and G. Teschl, Long-time asymptotics forthe Korteweg-de Vries equation with steplike initial data, Nonlinearity 26 (2013),1839–1864. CrossRef

[11] I. Egorova, J. Michor, and G. Teschl, Scattering theory for Jacobi operators withgeneral steplike quasi-periodic background, Zh. Mat. Fiz. Anal. Geom. 4 (2008),No. 1, 33–62.

[12] I. Egorova, J. Michor, and G. Teschl, Inverse scattering transform for the Todahierarchy with steplike finite-gap backgrounds, J. Math. Physics 50 (2009), 103522. CrossRef

[13] I. Egorova, J. Michor, and G. Teschl, Scattering theory with finite-gap backgrounds:transformation operators and characteristic properties of scattering data, Math.Phys. Anal. Geom. 16 (2013), 111–136. CrossRef

[14] I. Egorova, J. Michor, and G. Teschl, Rarefaction waves for the Toda equation vianonlinear steepest descent, Discrete Contin. Dyn. Syst. 38 (2018), 2007–2028. CrossRef

[15] I. Egorova and L. Pastur, On the asymptotic properties of polynomials orthogonalwith respect to varying weights and related problems of spectral theory, Algebra iAnaliz 25 (2013), No. 2, 101–124 (Russian). Engl. transl.: St. Petersburg Math. J.25 (2014), No. 2, 223–240. CrossRef

[16] H. Farkas and I. Kra, Riemann Surfaces, GTM 71, Springer, New York, 1980. CrossRef

[17] B.L. Holian, H. Flaschka, and D.W. McLaughlin, Shock waves in the Toda lattice:Analysis, Phys. Rev. A 24 (1981), 2595–2623. CrossRef

[18] B.L. Holian and G.K. Straub, Molecular dynamics of shock waves in one-dimensionalchains, Phys. Rev. B 18 (1978), 1593–1608. CrossRef

[19] A.R. Its, Asymptotics of solutions of the nonlinear Schrödinger equation and isomonodromic deformations of systems of linear differential equations, Soviet Math. Dokl.24 (1981), 452–456.

[20] S. Kamvissis, On the Toda shock problem, Phys. D 65 (1993), 242–256. CrossRef

[21] S. Kamvissis, On the long time behavior of the doubly infinite Toda lattice underinitial data decaying at infinity, Comm. Math. Phys. 153 (1993), No. 3, 479–519.

[22] S. Kamvissis and G. Teschl, Stability of periodic soliton equations under short rangeperturbations, Phys. Lett. A 364 (2007), 480–483. CrossRef

[23] S. Kamvissis and G. Teschl, Long-time asymptotics of the periodic Toda latticeunder short-range perturbations, J. Math. Phys. 53 (2012), 073706. CrossRef

[24] V.P. Kotlyarov and A.M. Minakov, Riemann–Hilbert problem to the modifiedKorteweg–de Vries equation: Long-time dynamics of the step-like initial data, J.Math. Phys. 51 (2010), 093506. CrossRef

[25] V.P. Kotlyarov and A.M. Minakov, Step-initial function to the mKdV equation:Hyper-elliptic long-time asymptotics of the solution, J. Math. Phys. Anal. Geom. 8(2012), 38–62.

[26] H. Krüger and G. Teschl, Long-time asymptotics for the Toda lattice in the solitonregion, Math. Z. 262 (2009), 585–602. CrossRef

[27] H. Krüger and G. Teschl, Long-time asymptotics of the Toda lattice for decayinginitial data revisited, Rev. Math. Phys. 21 (2009), 61–109. CrossRef

[28] H. Krüger and G. Teschl, Stability of the periodic Toda lattice in the soliton region,Int. Math. Res. Not. 2009 (2009), No. 21, 3996–4031.

[29] S.V. Manakov, Nonlinear Frauenhofer diffraction, Sov. Phys. JETP 38 (1974), No.4, 693–696.

[30] J. Michor, Wave phenomena of the Toda lattice with steplike initial data, Phys.Lett. A 380 (2016), 1110–1116. CrossRef

[31] A. Mikikits-Leitner and G. Teschl, Long-time asymptotics of perturbed finite-gapKorteweg–de Vries solutions, J. d’Analyse Math. 116 (2012), 163–218. CrossRef

[32] A.M. Minakov, Asymptotics of rarefaction wave solution to the mKdV equation, J.Math. Phys. Anal. Geom. 7 (2011), 59–86.

[33] N.I. Muskhelishvili, Singular Integral Equations, P. Noordhoff Ltd., Groningen,1953.

[34] Yu. Rodin, The Riemann Boundary Problem on Riemann Surfaces, Mathematicsand its Applications (Soviet Series) 16, D. Reidel Publishing Co., Dordrecht, 1988. CrossRef

[35] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math.Surv. and Mon. 72, Amer. Math. Soc., Rhode Island, 2000.

[36] G. Teschl, Algebro-geometric constraints on solitons with respect to quasi-periodicbackgrounds, Bull. London Math. Soc. 39 (2007), No. 4, 677–684.

[37] G. Teschl, On the spatial asymptotics of solutions of the Toda lattice, DiscreteContin. Dyn. Syst. 27 (2010), 1233–1239. CrossRef

[38] S. Venakides, P. Deift, and R. Oba, The Toda shock problem, Comm. Pure Appl.Math. 44 (1991), No. 8–9, 1171–1242.