References
[1] R.L. Anderson, S. Kumei, and C.E. Wulfman, Invariants of the equations of wavemechanics. I, Rev. Mexicana Fı́s. 21 (1972), 1–33.

[2] P. Basarab-Horwath, L. Lahno, and R. Zhdanov, The structure of the Lie algebrasand the classification problem of partial differential equations, Acta Appl. Math. 69(2001), 43–94. CrossRef

[3] C.P. Boyer, The maximal ‘kinematical’ invariance group for an arbitrary potential,Helv. Phys. Acta 47 (1974), 450–605.

[4] V. Boyko, J. Patera, and R. Popovych, Computation of invariants of Lie algebrasby means of moving frames, J. Phys. A 39 (2006), 5749–5762. CrossRef

[5] W.I. Fushchich, L.F. Barannyk, and A.F. Barannyk, Subgroup Analysis of Galileiand Poincare Groups and Reduction of Nonlinear Equations (Russian), NaukovaDumka, Kiev, 1991.

[6] W.I. Fushchich and A.G. Nikitin, Conformal invariance of relativistic equations forarbitrary spin particles, Lett. Math. Phys. 2 (1977/78), 471–475. CrossRef

[7] W.I. Fushchich and A.G. Nikitin, Higher symmetries and exact solutions of linearand nonlinear Schrödinger equation, J. Math. Phys. 38 (1997), 5944–5959. CrossRef

[8] C.R. Hagen, Scale and conformal transformations in Galilean-invariant conformalfield theory, Phys. Rev. D5 (1972), 377–388. CrossRef

[9] J.-M. Levy-Leblond, Galilei group and non-relativistic quantum mechanics, J. Math.Phys. 4 (1963), 776–788. CrossRef

[10] W. Miller, Jr., Symmetry and Separation of Variables, Encyclopedia of Mathematicsand its Applications, 4, Addison–Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1977.

[11] G.M. Murakzianov, Classification of real structures of Lie algebras of fifth order,Izv. Vyssh. Uchebn. Zaved. Mat. 3 (1963), 99–106 (Russian).

[12] U. Niederer, The maximal kinematical invariance group of the free Schrödingerequations, Helv. Phys. Acta 45 (1972), 802–810.

[13] U. Niederer, The maximal kinematical invariance group of the harmonic oscillator,Helv. Phys. Acta 47 (1973), 191–200.

[14] U. Niederer, The Group Theoretical Equivalence of the Free Particle, the HarmonicOscillator and the Free Fall, Proceedings of the 2nd International Colloquium onGroup Theoretical Methods in Physics, University of Nijmegen, The Netherlands,1973.

[15] A.G. Nikitin, Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. I. Generalized Ginsburg–Landau equations, J.Math. Anal. Appl. 324 (2006), 615–628. CrossRef

[16] A.G. Nikitin, Kinematical invariance groups of the 3d Schrödinger equations withposition dependent masses, J. Math. Phys. 58 (2017), 083508. CrossRef

[17] A.G. Nikitin and R.O. Popovich, Group classification of nonlinear Schrödinger equations, Ukrainian Math. J. 53 (2001), 1255–1265. CrossRef

[18] A.G. Nikitin and T.M. Zasadko, Superintegrable systems with position dependentmass, J. Math. Phys. 56 (2015), 042101. CrossRef

[19] A.G. Nikitin and T.M. Zasadko, Group classification of Schrödinger equations withposition dependent mass, J. Phys. A: Math. Theor. 49 (2016), 365204. CrossRef

[20] R.O. Popovych, V.M. Boyko, M.O. Nesterenko, and M.W. Lutfullin, Realizationsof real low-dimensional Lie algebras, J. Phys. A 36 (2003), 7337–7360. CrossRef

[21] L. S̆nobl and P. Winternitz. Classification and Identification of Lie Algebras, CRMMonograph Series, 33, American Mathematical Society, Providence, RI, 2014. CrossRef

[22] P. Winternitz, Ya.A. Smorodinskiı̆, M. Uhlir̆, and I. Fris̆, Symmetry groups in classical and quantum mechanics, Yad. Fiz. 4 (1966), 625–635,(Russian); Engl. transl.:Nucl. Phys. 4 (1967), 444–450.