References
[1] G. Avalos and F. Bucci, Rational rates of uniform decay for strong solutions to afluid-structure PDE system, J. Differential Equations 258 (2015), 4398–4423. CrossRef

[2] A. Babin and M. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.

[3] A. Balanov, N. Janson, D. Postnov, and O. Sosnovtseva, Synchronization: FromSimple to Complex, Springer, Berlin-Heidelberg, 2008.

[4] J. Ball, Global attractors for semilinear wave equations, Discrete Contin. Dyn. Syst.10 (2004), 31–52. CrossRef

[5] L. Boutet de Monvel and I. Chueshov, Oscillation of von Karman’s plate in a potential flow of gas, Izv. Ross. Akad. Nauk Ser. Mat. 63 (1999), 219–244. CrossRef

[6] L. Boutet de Monvel, I. Chueshov, and A. Rezounenko, Long-time behaviour ofstrong solutions of retarded nonlinear PDEs, Comm. Partial Differential Equations22 (1997), 1453–1474. CrossRef

[7] F. Bucci and I. Chueshov, Long-time dynamics of a coupled system of nonlinearwave and thermoelastic plate equations, Discrete Contin. Dyn. Syst. 22 (2008),557–586. CrossRef

[8] F. Bucci, I. Chueshov, and I. Lasiecka, Global attractor for a composite system ofnonlinear wave and plate equations, Commun. Pure Appl. Anal. 6 (2007), 113–140. CrossRef

[9] T. Caraballo, I. Chueshov, and P. Kloeden, Synchronization of a stochastic reactiondiffusion system on a thin two-layer domain, SIAM J. Math. Anal. 38 (2007), 1489–1507. CrossRef

[10] A. Carvalho and M.R.T. Primo, Boundary synchronization in parabolic problemswith nonlinear boundary conditions, Dyn. Contin. Discrete Impuls. Syst. Ser. AMath. Anal. 7 (2000), 541–560.

[11] A. Carvalho, H. Rodrigues, and T. Dlotko Upper semicontinuity of attractors andsynchronization, J. Math. Anal. Appl. 220 (1998), 13–41. CrossRef

[12] A. Chambolle, B. Desjardins, M. Esteban, and C. Grandmont, Existence of weaksolutions for the unsteady interaction of a viscous fluid with an elastic plate, J.Math. Fluid Mech. 7 (2005), 368–404. CrossRef

[13] V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics,Amer. Math. Soc., Providence, RI, 2002. CrossRef

[14] I. Chueshov, On a certain system of equations with delay, occurring in aeroelasticity, Teoriya Funktsii, Funktsionalnyi Analiz i Prilozheniya 54 (1990), 123–130 (inRussian); Engl. transl.: Journal of Soviet Mathematics 58 (1992), 385–390. CrossRef

[15] I. Chueshov, On the finiteness of the number of determining elements for von Karman evolution equations, Math. Methods Appl. Sci. 20 (1997), 855–865. CrossRef

[16] I. Chueshov, Theory of functionals that uniquely determine asymptotic dynamics ofinfinite-dimensional dissipative systems, Russian Math. Surveys 53 (1998), 731–776. CrossRef

[17] I.D. Chueshov, Dynamics of von Karman plate in a potential flow of gas: rigorousresults and unsolved problems, Proceedings of 16th IMACS World Congress (eds.M. Deville and R. Owens), EPFL Scientific Publications, 2000, 1–6.

[18] I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999 (Russian); Engl. transl.: Acta, Kharkov, 2002. Availablefrom: http://www.emis.de/monographs/Chueshov/

[19] I. Chueshov, A reduction principle for coupled nonlinear parabolic-hyperbolic PDE,J. Evol. Equ. 4 (2004), 591–612. CrossRef

[20] I. Chueshov, Invariant manifolds and nonlinear master-slave synchronization in coupled systems, Appl. Anal. 86 (2007), 269–286. CrossRef

[21] I. Chueshov, A global attractor for a fluid-plate interaction model accounting onlyfor longitudinal deformations of the plate, Math. Methods Appl. Sci. 34 (2011),1801–1812. CrossRef

[22] I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlineardamping, J. Differential Equations 252 (2012), 1229–1262. CrossRef

[23] I. Chueshov, Quantum Zakharov model in a bounded domain, Z. Angew. Math.Phys. 64 (2013), No. 4, 967–989. CrossRef

[24] I. Chueshov, Discrete data assimilation via Ladyzhenskaya squeezing property inthe 3D viscous primitive equations, preprint, https://arxiv.org/abs/1308.1570.

[25] I. Chueshov, Dynamics of a nonlinear elastic plate interacting with a linearizedcompressible viscous fluid, Nonlinear Anal. 95 (2014), 650–665. CrossRef

[26] I. Chueshov, Interaction of an elastic plate with a linearized inviscid incompressiblefluid, Commun. Pure Appl. Anal. 13 (2014), 1759–1778. CrossRef

[27] I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer, New York,2015. CrossRef

[28] I. Chueshov, Synchronization in coupled second order in time infinite-dimensionalmodels, Dyn. Partial Differ. Equ. 13 (2016), No. 1, 1–29. CrossRef

[29] I. Chueshov, Remark on an elastic plate interacting with a gas in a semi-infinitetube: periodic solutions, Evol. Equ. Control Theory 5 (2016), No. 4, 561–566. CrossRef

[30] I. Chueshov, E. Dowell, I. Lasiecka, and J.T. Webster, Von Karman plate in a gasflow: recent results and conjectures, Appl. Math. Optim. 73(3) (2016), 475–500. CrossRef

[31] I. Chueshov, E. Dowell, I. Lasiecka, and J.T. Webster, Mathematical Aeroelasticity:A Survey, Mathematics in Engineering, Sciense and Aerospace 7 (2016), 5–29.

[32] I. Chueshov, M. Eller, and I. Lasiecka, Finite dimensionality of the attractor fora semilinear wave equation with nonlinear boundary dissipation, Commun. PartialDifferential Equations 29 (2004), 1847–1976. CrossRef

[33] I. Chueshov and S. Kolbasin, Plate models with state-dependent damping coefficientand their quasi-static limits, Nonlinear Anal. 73 (2010), 1626–1644. CrossRef

[34] I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, Commun. Pure Appl. Anal. 11 (2012), 659–674. CrossRef

[35] I. Chueshov and I. Lasiecka, Attractors for second order evolution equations with anonlinear damping, J. Dynam. Differential Equations 16 (2004), 469–512. CrossRef

[36] I. Chueshov and I. Lasiecka, Global attractors for Mindlin–Timoshenko plates andfor their Kirchhoff limits, Milan J. Math. 74 (2006), 117–138. CrossRef

[37] I. Chueshov and I. Lasiecka, Existence, uniqueness of weak solutions and globalattractors for a class of nonlinear 2D Kirchhoff–Boussinesq models, Discrete Contin.Dyn. Syst. 15 (2006), 777–809. CrossRef

[38] I. Chueshov and I. Lasiecka, Long-time dynamics of semilinear wave equation withnonlinear interior-boundary damping and sources of critical exponents, ControlMethods in PDE-Dynamical systems, Contemp. Math., 426, Amer. Math. Soc.,Providence, RI, 2007, 153–192. CrossRef

[39] I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc. 195, Amer. Math. Soc.,Providence, RI, 2008. CrossRef

[40] I. Chueshov and I. Lasiecka, Attractors and long-time behavior of von Karmanthermoelastic plates, Appl. Math. Optim. 58 (2008), 195–241. CrossRef

[41] I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer, New York,2010. CrossRef

[42] I. Chueshov and I. Lasiecka, On global attractor for 2D Kirchhoff–Boussinesq modelwith supercritical nonlinearity, Comm. Partial Differential Equations 36 (2011), 67–99. CrossRef

[43] I. Chueshov and I. Lasiecka, Well-posedness and long-time behavior in nonlinear dissipative hyperbolic-like evolutions with critical exponents, HCDTE Lecture Notes,Part I, Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations, AIMSSer. Appl. Math., 6, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2013.

[44] I. Chueshov, I. Lasiecka, and D. Toundykov, Long-term dynamics of semilinear waveequation with nonlinear localized interior damping and a source term of criticalexponent, Discrete Contin. Dyn. Syst. 20 (2008), 459–509. CrossRef

[45] I. Chueshov, I. Lasiecka, and D. Toundykov, Global attractor for a wave equationwith nonlinear localized boundary damping and a source term of critical exponent,J. Dynam. Differential Equations 21 (2009), 269–314. CrossRef

[46] I. Chueshov, I. Lasiecka, and J.T. Webster, Evolution semigroups for supersonicflow-plate interactions, J. Differential Equations 254 (2013), 1741–1773. CrossRef

[47] I. Chueshov, I. Lasiecka, and J.T. Webster, Flow-plate interactions: well-posednessand long-time behavior, Discrete Contin. Dyn. Syst. Ser. S 7 (2014), 925–965. CrossRef

[48] I. Chueshov, I. Lasiecka, and J.T. Webster, Attractors for delayed, nonrotationalvon Karman plates with applications to flow-structure interactions without anydamping, Comm. Partial Differential Equations 39 (2014), 1965–1997. CrossRef

[49] I. Chueshov and A. Rezounenko, Global attractors for a class of retarded quasilinearpartial differential equations, C. R. Acad. Sci. Paris, Ser. I 321 (1995), 607–612.

[50] I. Chueshov and A. Rezounenko, Dynamics of second order in time evolution equations with state-dependent delay, Nonlinear Anal. 123 (2015), 126–149. CrossRef

[51] I. Chueshov and A. Rezounenko, Finite-dimensional global attractors for parabolicnonlinear equations with state-dependent delay, Commun. Pure Appl. Anal. 14(2015), 1685–1704. CrossRef

[52] I. Chueshov and I. Ryzhkova, A global attractor for a fluid–plate interaction model,Commun. Pure Appl. Anal. 12 (2013), 1635–1656. CrossRef

[53] I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elasticplate modeled by full von Karman equations, J. Differential Equations 254 (2013),1833–1862. CrossRef

[54] I. Chueshov and I. Ryzhkova, On the interaction of an elastic wall with a Poiseuilletype flow, Ukrainian Math. J. 65 (2013), No. 1, 158–177. CrossRef

[55] I. Chueshov and B. Schmalfuss, Stochastic dynamics in a fluid–plate interactionmodel with the only longitudinal deformations of the plate, Discrete Contin. Dyn.Syst. Ser. B 20 (2015), 833–852. CrossRef

[56] I. Chueshov and A. Shcherbina, On 2D Zakharov system in a bounded domain,Differential Integral Equations 18 (2005), 781–812.

[57] I. Chueshov and A. Shcherbina, Semi-weak well-posedness and attractor for 2DSchrödinger–Boussinesq equations, Evolution Equations and Control Theory 1(2012), 57–80. CrossRef

[58] P. Ciarlet, Mathematical Elasticity. Theory of Shells, North-Holland, Amsterdam,2000.

[59] P. Ciarlet and P. Rabier, Les Equations de von Karman, Springer, Berlin, 1980. CrossRef

[60] B. Cockburn, D.A. Jones, and E. Titi, Determining degrees of freedom for nonlineardissipative systems, C.R. Acad. Sci. Paris, Ser. I 321 (1995), 563–568.

[61] B. Cockburn, D. A. Jones, and E. Titi, Estimating the number of asymptotic degreesof freedom for nonlinear dissipative systems, Math. Comp. 66 (1997), 1073–1087. CrossRef

[62] B.D. Coleman and M.E. Gurtin, Equipresence and constitutive equations for rigidheat conductors, Z. Angew. Math. Phys. 18 (1967), 199-208. CrossRef

[63] P. Constantin, C. Doering, and E. Titi, Rigorous estimates of small scales in turbulent flows, J. Math. Phys. 37 (1996), 6152–6156. CrossRef

[64] P. Constantin, C. Foias, and R. Temam, Attractors Representing Turbulent Flows,Mem. Amer. Math. Soc. 53, 314, Amer. Math. Soc., Providence, RI, 1985. CrossRef

[65] C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal.37 (1970), 297–308. CrossRef

[66] O. Diekmann, S. van Gils, S. Lunel, and H.-O. Walther, Delay Equations, Springer,Berlin, 1995. CrossRef

[67] A. Eden, C. Foias, B. Nicolaenko, and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Masson, Paris, 1994.

[68] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley,Chichester, 1990. CrossRef

[69] T. Fastovska, Upper semicontinuous attractor for 2D Mindlin–Timoshenko thermoelastic model with memory, Commun. Pure Appl. Anal. 6 (2007), 83–101. CrossRef

[70] T. Fastovska, Upper semicontinuous attractors for a 2D Mindlin–Timoshenkothermo-viscoelastic model with memory, Nonlinear Anal. 71 (2009), 4833–4851. CrossRef

[71] I. Flahaut, Attractors for the dissipative Zakharov system, Nonlinear Anal. 16(1991), 599–633. CrossRef

[72] C. Foias, O. Manley, R. Temam and Y.M. Treve, Asymptotic analysis of the Navier–Stokes equations, Phys. D 9 (1983), 157–188. CrossRef

[73] C. Foias and G. Prodi, Sur le comportement global des solutions non stationnairesdes equations de Navier–Stokes en dimension deux, Rend. Semin. Mat. Univ. Padova39 (1967), 1–34.

[74] C. Foias and R. Temam, Determination of solutions of the Navier–Stokes equationsby a set of nodal values, Math. Comp. 43 (1984), 117–133. CrossRef

[75] C. Foias and E.S. Titi, Determining nodes, finite difference schemes and inertialmanifolds, Nonlinearity 4 (1991), 135–153. CrossRef

[76] L.G. Garcia, F. Haas, J. Goedert, and L.P. Oliveira, Modified Zakharov equationsfor plasmas with a quantum correction, Phys. Plasmas 12 (2005), 012302. CrossRef

[77] O. Goubet and I. Moise, Attractor for dissipative Zakharov system, Nonlinear Anal.7 (1998), 823–847. CrossRef

[78] S. Gourley, J. So, and J. Wu, Non-locality of reaction–dffusion equations inducedby delay: biological modeling and nonlinear dynamics, Journal of MathematicalSciences 4 (2004), 5119–5153. CrossRef

[79] M. Grobbelaar-Van Dalsen, Strong stability for a fluid-structure model, Math. Methods Appl. Sci. 32 (2009), 1452–1466. CrossRef

[80] M.E. Gurtin and V. Pipkin, A general theory of heat conduction with finite wavespeeds, Arch. Rational Mech. Anal. 31 (1968), 113–126. CrossRef

[81] F. Haas and P.K. Shukla, Quantum and classical dynamics of Langmuir wave packets, Phys. Rev. E 79 (2009), 066402. CrossRef

[82] J. Hale, Diffusive coupling, dissipation, and synchronization, J. Dynam. DifferentialEquations 9 (1997), 1–52. CrossRef

[83] J.K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. CrossRef

[84] A. Haraux, Semilinear Hyperbolic Problems in Bounded Domains, MathematicalReports, 3, Harwood Gordon Breach, New York, 1987.

[85] K. Hayden, E. Olson, and E.S. Titi, Discrete data assimilation in the Lorenz and2D Navier–Stokes equations, Phys. D 240 (2011), 1416–1425. CrossRef

[86] D.A. Jones and E.S. Titi, Determination of the solutions of the Navier–Stokes equations by finite volume elements, Phys. D 60 (1992), 165–174. CrossRef

[87] D.A. Jones and E.S. Titi,Upper bounds on the number of determining modes, nodesand volume elements for the Navier–Stokes equations, Indiana Univ. Math. J. 42(1993), 875–887. CrossRef

[88] L.V. Kapitansky and I.N. Kostin, Attractors of nonlinear evolution equations andtheir approxiamtins, Leningrad Math. J. 2 (1991), 97–117.

[89] A.K. Khanmamedov, Global attractors for von Karman equations with nonlineardissipation, J. Math. Anal. Appl. 318 (2006), 92–101. CrossRef

[90] H. Koch and I. Lasiecka, Hadamard wellposedness of weak solutions in nonlinear elasticity-full von Karman systems, Evolution equations, semigroups and functional analysis (Milano, 2000), Progr. Nonlinear Differential Equations Appl., 50,Birkhäuser, Basel, 2002, 197–216. CrossRef

[91] O. Ladyzhenskaya, A dynamical system generated by the Navier–Stokes equations,Dokl. Akad. Nauk SSSR 205 (1972), 318–320 (Russian); Engl. transl.: J. SovietMath. 3(4) (1975), 458–479. CrossRef

[92] O. Ladyzhenskaya, Estimates for the fractal dimension and number of deterministicmodes for invariant sets of dynamical systems, Zap. Nauchn. Semin. Leningr. Otd.Mat. Inst. Steklova 163 (1987), 105–129 (Russian); Engl. transl.: J. Soviet Math.49 (1990), 1186–1201. CrossRef

[93] O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge,Cambridge University Press, 1991. CrossRef

[94] J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, 1989. CrossRef

[95] J. Lagnese and J.L. Lions, Modeling, Analysis and Control of Thin Plates, Masson,Paris, 1988.

[96] I. Lasiecka, Mathematical Control Theory of Coupled PDE’s, CBMS-NSF LectureNotes, SIAM, Philadelphia, 2002. CrossRef

[97] I. Lasiecka and J.T. Webster, Eliminating flutter for clamped von Karman platesimmersed in subsonic flows, Commun. Pure Appl. Anal. 13 (2014), 1935–1969. CrossRef

[98] I. Lasiecka and J.T. Webster, Feedback stabilization of a fluttering panel in aninviscid subsonic potential flow, SIAM J. Math. Anal. 48(3) (2016), 1848–1891. CrossRef

[99] G. Leonov, V. Reitmann, and V. Smirnova, Non-Local Methods for Pendulum-LikeFeedback Systems, Teubner, Stuttgart-Leipzig, 1992. CrossRef

[100] G. Leonov and V. Smirnova, Mathematical Problems of Phase SynchronizationTheory, Nauka, St. Petersburg, 2000 (Russian).

[101] J.L. Lions, On some questions in boundary value problems in mathematical physics,Contemporary Development in Continuum Mechanics and PDE (Proc. Internat.Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), NorthHolland Math. Stud., 30, North-Holland, Amsterdam-New York, 1978, 284–346.

[102] J. Málek and J. Nečas, A finite dimensional attractor for three dimensional flow ofincompressible fluids, J. Differential Equations 127 (1996), 498–518. CrossRef

[103] J. Málek and D. Pražak, Large time behavior via the method of l-trajectories, J.Differential Equations 181 (2002), 243–279. CrossRef

[104] B.S. Massey and J. Ward-Smith, Mechanics of Fluids, 8th ed., Taylor & Francis,New York, 2006.

[105] A. Miranville and S. Zelik, Attractors for dissipative partial differential equationsin bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations (eds. C.M. Dafermos and M. Pokorny), 4, Elsevier, Amsterdam,2008. CrossRef

[106] I. Moise, R. Rosa, and X. Wang, Attractors for non-compact semigroups via energyequations, Nonlinearity 11 (1998), 1369–1393. CrossRef

[107] E. Mosekilde, Y. Maistrenko, and D. Postnov, Chaotic Synchronization, WorldScientific Publishing Co., River Edge, NJ, 2002. CrossRef

[108] O. Naboka, Synchronization of nonlinear oscillations of two coupling Berger plates,Nonlinear Anal. 67 (2007), 1015–1026. CrossRef

[109] O. Naboka, Synchronization phenomena in the system consisting of m coupledBerger plates, J. Math. Anal. Appl. 341 (2008), 1107–1124. CrossRef

[110] O. Naboka, On synchronization of oscillations of two coupled Berger plates withnonlinear interior damping, Commun. Pure Appl. Anal. 8 (2009), 1933–1956. CrossRef

[111] G. Osipov, J. Kurths, and C. Zhou, Synchronization in Oscillatory Networks,Springer, Berlin-Heidelberg, 2007. CrossRef

[112] T.J. Pedley, The Fluid Mechanics of Large Blood Vessels, Cambridge UniversityPress, Cambridge, 1980. CrossRef

[113] M. Potomkin, Asymptotic behavior of thermoviscoelastic Berger plate, Commun.Pure Appl. Anal. 9 (2010), 161–192. CrossRef

[114] D. Pražak, On finite fractal dimension of the global attractor for the wave equationwith nonlinear damping, J. Dynam. Differential Equations 14 (2002), 764–776.

[115] G. Raugel, Global attractors in partial differential equations, Handbook of Dynamical Systems (ed. B. Fiedler), 2, Elsevier Sciences, Amsterdam, 2002. CrossRef

[116] A.V. Rezounenko and P. Zagalak, Non-local PDEs with discrete state-dependentdelays: well-posedness in a metric space, Discrete Contin. Dyn. Syst. 33 (2013),819–835. CrossRef

[117] H. Rodrigues, Abstract methods for synchronization and applications, Appl. Anal.62 (1996), 263–296. CrossRef

[118] I. Ryzhkova, Stabilization of a von Karman plate in the presence of thermal effectsin a subsonic potential flow of gas, J. Math. Anal. Appl. 294 (2004), 462–481. CrossRef

[119] I. Ryzhkova, On a retarded PDE system for a von Karman plate with thermaleffects in the flow of gas, Zh. Mat. Fiz. Anal. Geom. 12 (2005), No. 2, 173–186.

[120] I. Ryzhkova, Dynamics of a thermoelastic von Karman plate in a subsonic gas flow,Z. Angew. Math. Phys. 58 (2007), 246–261. CrossRef

[121] V.I. Sedenko, On the uniqueness theorem for generalized solutions of initialboundary problems for the Marguerre–Vlasov vibrations of shallow shells withclamped boundary conditions, Appl. Math. Optim. 39 (1999), 309–326. CrossRef

[122] G.R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, New York,2002. CrossRef

[123] A.P.S. Selvadurai, Elastic Analysis of Soil Foundation Interaction, Elsevier, Amsterdam, 1979.

[124] M. Sermange and R. Temam, Some mathematical questions related to MHD equations, Commun. Pure Appl. Math. 36 (1983), 635–664. CrossRef

[125] S. Strogatz, Sync, Hyperion Books, New York, 2003.

[126] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,Springer, New York, 1988. CrossRef

[127] R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, Reprint ofthe 1984 edition, Amer. Math. Soc. Chelsea Publishing, Providence, RI, 2001. CrossRef

[128] I.I. Vorovich, On some direct methods in nonlinear oscillations of shallow shells,Izv. Akad. Nauk SSSR. Ser. Mat. 21(6) (1957), 747–784 (Russian).

[129] C.W. Wu, Synchronization in coupled chaotic circuits and systems, World ScientificPublishing Co., River Edge, NJ, 2002.

[130] J. Wu, Theory and Applications of Partial Functional Differential Equations,Springer-Verlag, New York, 1996. CrossRef

[131] V.E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 908–912.