References
[1] I. Afanasiev, On the correlation functions of the characteristic polynomials of thesparse Hermitian random matrices, J. Stat. Phys. 163(2) (2016), 324–356. CrossRef

[2] I. Afanasiev, On the correlation functions of the characteristic polynomials of nonHermitian random matrices with independent entries, J. Stat. Phys. 176(6) (2019),1561–1582. CrossRef

[3] G. Akemann and E. Kanzieper, Integrable structure of Ginibre’s ensemble of realrandom matrices and a Pfaffian integration theorem, J. Stat. Phys. 129(5-6) (2007),1159–1231. CrossRef

[4] F.A. Berezin, Introduction to Superanalysis, Number 9 in Math. Phys. Appl.Math. D. Reidel Publishing Co., Dordrecht, 1987. Edited and with a foreword byA.A. Kirillov. With an appendix by V.I. Ogievetsky. Translated from the Russianby J. Niederle and R. Kotecký. Translation edited by D. Leı̆tes. CrossRef

[5] C. Bordenave and D. Chafaı̈, Around the circular law, Probab. Surv. 9 (2012),1–89. CrossRef

[6] A. Borodin and C. D. Sinclair, The Ginibre ensemble of real random matrices andits scaling limits, Comm. Math. Phys. 291 (2009), 177–224. CrossRef

[7] A. Borodin and E. Strahov, Averages of characteristic polynomials in random matrixtheory, Comm. Pure Appl. Math. 59(2) (2006), 161–253. CrossRef

[8] E. Brézin and S. Hikami, Characteristic polynomials of random matrices, Comm.Math. Phys. 214 (2000), 111–135. CrossRef

[9] E. Brézin and S. Hikami. Characteristic polynomials of real symmetric randommatrices, Comm. Math. Phys. 223 (2001), 363–382. CrossRef

[10] G. Cipolloni, L. Erdős, and D. Schröder, Edge universality for non-Hermitian random matrices, preprint, https://arxiv.org/abs/1908.00969v2.

[11] G. Cipolloni, L. Erdős, and D. Schröder, Optimal lower bound on the least singularvalue of the shifted Ginibre ensemble, preprint, https://arxiv.org/abs/1908.01653v3.

[12] G. Cipolloni, L. Erdős, and D. Schröder, Fluctuation around the circular law for random matrices with real entries, preprint, https://arxiv.org/abs/2002.02438v1.

[13] M. Disertori, M. Lohmann, and S. Sodin, The density of states of 1D random bandmatrices via a supersymmetric transfer operator, preprint, https://arxiv.org/abs/1810.13150v1.

[14] M. Disertori, T. Spencer, and M. R. Zirnbauer, Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model, Comm. Math. Phys. 300(2) (2010), 435–486. CrossRef

[15] K. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University Press,Cambridge, 1997. CrossRef

[16] K. B. Efetov, Supersymmetry and theory of disordered metals, Adv. in Physics32(1) (1983), 53–127. CrossRef

[17] Y. V. Fyodorov and A. D. Mirlin, Localization in ensemble of sparse random matrices, Phys. Rev. Lett. 67 (1991), 2049–2052. CrossRef

[18] Y. V. Fyodorov and E. Strahov, An exact formula for general spectral correlationfunction of random Hermitian matrices. Random matrix theory, J. Phys. A 36(12)(2003), 3203–3214. CrossRef

[19] J. Ginibre, Statistical ensembles of complex, quaternion, and real matrices, J. Math.Phys. 6 (1965), 440–449. CrossRef

[20] V. L. Girko, The circular law, Teor. Veroyatn. Primen. 29(4) (1984), 669–679. CrossRef

[21] V. L. Girko, The circular law: ten years later, Random Oper. Stoch. Equ. 2(3)(1994), 235–276. CrossRef

[22] V. L. Girko, The strong circular law. Twenty years later. I, Random Oper. Stoch.Equ. 12(1) (2004), 49–104. CrossRef

[23] V. L. Girko, The strong circular law. Twenty years later. II, Random Oper. Stoch.Equ. 12(3) (2004), 255–312. CrossRef

[24] V. L. Girko, The circular law. Twenty years later. III, Random Oper. Stoch. Equ.13(1) (2005), 53–109. CrossRef

[25] T. Guhr, Supersymmetry, The Oxford Handbook of Random Matrix Theory (eds.G. Akemann, J. Baik, and P.D. Francesco), Oxford university press, 2015, 135–154.

[26] P. Kopel, Linear statistics of non-Hermitian matrices matching the real or complex Ginibre ensemble to four moments, preprint, https://arxiv.org/abs/1510.02987v1

[27] P. Littelmann, H.-J. Sommers, and M.R. Zirnbauer, Superbosonization of invariantrandom matrix ensembles, Comm. Math. Phys., 283 (2008), 343–395. CrossRef

[28] M.L. Mehta, Random Matrices and the Statistical Theory of Energy Levels, Academic Press, New York–London, 1967.

[29] A.D. Mirlin and Y.V. Fyodorov, Universality of level correlation function of sparserandom matrices, J. Phys. A 24 (1991), 2273–2286. CrossRef

[30] S. O’Rourke and D. Renfrew, Central limit theorem for linear eigenvalue statisticsof elliptic random matrices, J. Theoret. Probab. 29 (2016), 1121–1191. CrossRef

[31] L. Pastur and M. Shcherbina, Szegö-Type theorems for one-dimensional Schrödingeroperator with random potential (smooth case) Zh. Mat. Fiz. Anal. Geom. 14 (2018),362–388. CrossRef

[32] C. Recher, M. Kieburg, T. Guhr, and M.R. Zirnbauer, Supersymmetry approach toWishart correlation matrices: Exact results, J. Stat. Phys. 148(6) (2012), 981–998. CrossRef

[33] M. Shcherbina and T. Shcherbina, Transfer matrix approach to 1d random bandmatrices: density of states, J. Stat. Phys. 164(6) (2016), 1233–1260. CrossRef

[34] M. Shcherbina and T. Shcherbina, Characteristic polynomials for 1D random bandmatrices from the localization side, Comm. Math. Phys. 351(3) (2017), 1009–1044. CrossRef

[35] M. Shcherbina and T. Shcherbina, Universality for 1d random band matrices: sigmamodel approximation, J. Stat. Phys. 172(2) (2018), 627–664. CrossRef

[36] T. Shcherbina, On the correlation function of the characteristic polynomials of theHermitian Wigner ensemble, Comm. Math. Phys. 308 (2011), 1–21. CrossRef

[37] T. Shcherbina, On the correlation functions of the characteristic polynomials of theHermitian sample covariance matrices, Probab. Theory Related Fields 156 (2013),449–482. CrossRef

[38] E. Strahov and Y.V. Fyodorov, Universal results for correlations of characteristicpolynomials: Riemann-Hilbert approach, Comm. Math. Phys. 241(2-3) (2003),343–382. CrossRef

[39] T. Tao and V. Vu, Random matrices: universality of ESDs and the circular law, Ann.Probab. 38(5) (2010), 2023–2065. With an appendix by Manjunath Krishnapur. CrossRef

[40] T. Tao and V. Vu, Random matrices: universality of local spectral statistics ofnon-Hermitian matrices, Ann. Probab. 43(2) (2015), 782–874. CrossRef

[41] E.B. Vinberg, A Course in Algebra, American Mathematical Society, Providence,RI, 2003. CrossRef