References
[1] G.M. Adelson-Welsky and A.S. Kronrode, Sur les lignes de niveau des fonctionscontinues possédant des dérivées partielles, C. R. (Doklady) Acad. Sci. URSS (N.S.)49 (1945), 235–237 (French).

[2] E.B. Batista, J.C.F. Costa, and I.S. Meza-Sarmiento, Topological classification ofcircle-valued simple Morse–Bott functions, J. Singul. 17 (2018), 388–402. CrossRef

[3] A.V. Bolsinov and A.T. Fomenko, Introduction to the Topology of Integrable Hamiltonian Systems, Nauka, Moscow, 1997 (Russian).

[4] A.V. Bolsinov and A.T. Fomenko, Some actual unsolved problems in topology ofintegrable Hamiltonian systems, Topological Classification in Theory of HamiltonianSystems, Factorial, Moscow, 1999, 5–23.

[5] Yu. Brailov, Algebraic properties of symmetries of atoms, Topological Classificationin Theory of Hamiltonian Systems, Factorial, Moscow, 1999, 24–40.

[6] Yu.A. Brailov and E.A. Kudryavtseva, Stable topological nonconjugacy of Hamiltonian systems on two-dimensional surfaces, Vestnik Moskov. Univ. Ser. I Mat. Mekh.72 (1999), No. 2, 20–27.

[7] A. Constantin and B. Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math. (2) 40 (1994), No. 3-4, 193–204.

[8] R. Cori and A. Machı̀. Construction of maps with prescribed automorphism group,Theoret. Comput. Sci. 21 (1982), No. 1, 91–98. CrossRef

[9] E.N. Dancer. Degenerate critical points, homotopy indices and Morse inequalitiesII, J. Reine Angew. Math. 382 (1987), 145–164. CrossRef

[10] A.T. Fomenko. A Morse theory for integrable Hamiltonian systems, Dokl. Akad.Nauk SSSR 287 (1986), No. 5, 1071–1075 (Russian).

[11] A.T. Fomenko, Symplectic topology of completely integrable Hamiltonian systems,Uspekhi Mat. Nauk 44 (1989), No. 1(265), 145–173, 248 (Russian). CrossRef

[12] J. Franks, Nonsingular Smale flows on S 3 , Topology, 24 (1985), No. 3, 265–282. CrossRef

[13] R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio Math. 6 (1939), 239–250.

[14] C. Jordan, Sur les assemblages de lignes, J. Reine Angew. Math. 70 (1869), 185–190. CrossRef

[15] A.A. Kadubovsky and A.V. Klimchuk. Classification of O-topologically nonequivalent functions with color chord diagrams, Methods Funct. Anal. Topology,10 (2004), No. 3, 23–32.

[16] F.C. Klein, Lectures on the ikosahedron and the solution of equations of the fifthdegree, Cornel University Library, 322 (1888), 21–23.

[17] A. Kravchenko and S. Maksymenko, Automorphisms of Kronrod-Reeb graphs ofMorse functions on compact surfaces, European Journal of Mathematics, https://arxiv.org/abs/1808.08746.

[18] A.S. Kronrod, On functions of two variables, Uspehi Matem. Nauk (N.S.) 5 (1950),No. 1(35), 24–134 (Russian).

[19] E.A. Kudryavtseva, Realization of smooth functions on surfaces as height functions,Mat. Sb., 190 (1999), No. 3, 29–88 (Russian). CrossRef

[20] E.A. Kudryavtseva, Special framed Morse functions on surfaces, Vestnik Moskov.Univ. Ser. I Mat. Mekh. (2012), No. 4, 14–20. CrossRef

[21] E.A. Kudryavtseva. The topology of spaces of Morse functions on surfaces, Math.Notes 92 (2012), No. 1-2, 219–236. CrossRef

[22] E.A. Kudryavtseva. On the homotopy type of spaces of Morse functions on surfaces,Mat. Sb. 204 (2013), No. 1, 79–118 (Russian). CrossRef

[23] E.A. Kudryavtseva and A.T. Fomenko. Symmetry groups of nice Morse functionson surfaces, Dokl. Akad. Nauk 446 (2012), No. 6, 615–617 (Russian).

[24] E.A. Kudryavtseva and A.T. Fomenko. Each finite group is a symmetry group ofsome map (an “Atom”-bifurcation), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 68(2013), No. 3, 148–155. CrossRef

[25] E.A. Kudryavtseva, I.M. Nikonov, and A.T. Fomenko, Maximally symmetric cellular partitions of surfaces and their coverings, Mat. Sb. 199 (2008), No. 9, 3–96(Russian). CrossRef

[26] E.V. Kulinich, On topologically equivalent Morse functions on surfaces, MethodsFunct. Anal. Topology 4 (1998), No. 1, 59–64.

[27] S. Maksymenko and B. Feshchenko, Orbits of smooth functions on 2-torus and theirhomotopy types, Matematychni Studii 44 (20151), No. 1, 67–84. CrossRef

[28] S. Maksymenko and B. Feshchenko, Smooth functions on 2-torus whose kronrod-reebgraph contains a cycle, Methods Funct. Anal. Topology 21 (2015), No. 1, 22–40.

[29] S. Maksymenko, Homotopy types of stabilizers and orbits of Morse functions onsurfaces, Ann. Global Anal. Geom. 29 (2006), No. 3, 241–285. CrossRef

[30] S. Maksymenko, Functions on surfaces and incompressible subsurfaces, MethodsFunct. Anal. Topology 16 (2010), No. 2, 167–182.

[31] S. Maksymenko, Deformations of functions on surfaces by isotopic to the identity diffeomorphisms, Topology Appl. (to appear), https://arxiv.org/abs/1311.3347.

[32] S. Maksymenko and B. Feshchenko, Homotopy properties of spaces of smooth functions on 2-torus, Ukraı̈n. Mat. Zh. 66 (2014), No. 9, 1205–1212 (Russian).

[33] L.P. Michalak, Realization of a graph as the Reeb graph of a Morse function on amanifold, Topol. Methods Nonlinear Anal. 52 (2018), 749–762. CrossRef

[34] E.C. Nummela, Cayley’s theorem for topological groups, Amer. Math. Monthly 87(1980), No. 3, 202–203. CrossRef

[35] E.A. Polulyakh, Kronrod–Reeb graphs of functions on noncompact two-dimensionalsurfaces II, Ukrainian Math. J. 67 (2016), No. 10, 1572–1583. CrossRef

[36] A.O. Prishlyak, Topological equivalence of smooth functions with isolated criticalpoints on a closed surface, Topology Appl. 119 (2002), No. 3, 257–267. CrossRef

[37] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci.Ind., No. 1183, Hermann & Cie., Paris, 1952. Publ. Inst. Math. Univ. Strasbourg11, 5–89, 155–156 (French).

[38] V.V. Sharko, Smooth and topological equivalence of functions on surfaces, Ukraı̈n.Mat. Zh. 55 (2003), No. 5, 687–700 (Russian). CrossRef

[39] J. Širáň and M. Škoviera, Orientable and nonorientable maps with given automorphism groups, Australas. J. Combin. 7 (1993), 47–53.