References
[1] L. Aharouch, E. Azroul, and A. Benkirane, Quasilinear degenerated equations with L1 datum and without coercivity in perturbation terms, Electron. J. Qual. Theory Diﬀer. Equ. (2006), No. 19, 1–18. CrossRef

[2] Y. Atik and J.-M. Rakotoson, Local T -sets and degenerate variational problems. I, Appl. Math. Lett. 7 (1994), No. 4, 49–53. CrossRef

[3] M. Bendahmane and K.H. Karlsen, Nonlinear anisotropic elliptic and parabolic equations in RN with advection and lower order terms and locally integrable data, Potential Anal. 22 (2005), No. 3, 207–227. CrossRef

[4] Ph. B´ enilan, L. Boccardo, T. Gallou¨ et, R. Gariepy, M. Pierre, and J.L. Vazquez, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), No. 2, 241–273.

[5] L. Boccardo and T. Gallou¨ et, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), No. 1, 149–169. CrossRef

[6] L. Boccardo and T. Gallou¨ et, Nonlinear elliptic equations with right hand side measures, Comm. Partial Diﬀerential Equations 17 (1992), No. 3–4, 641–655. CrossRef

[7] L. Boccardo, T. Gallou¨ et, and P. Marcellini, Anisotropic equations in L1, Diﬀeren- tial Integral Equations 9 (1996), No. 1, 209–212.

[8] A.C. Cavalheiro, Existence of entropy solutions for degenerate quasilinear elliptic equations, Complex Var. Elliptic Equ. 53 (2008), No. 10, 945–956. CrossRef

[9] G. R. Cirmi, On the existence of solutions to non-linear degenerate elliptic equations with measures data, Ricerche Mat. 42 (1993), No. 2, 315–329.

[10] Yu. Gorban, Existence of entropy solutions for nonlinear elliptic degenerate anisotropic equations, Open Math. 15 (2017), 768–786. CrossRef

[11] Yu. Gorban, On uniqueness of entropy solutions for nonlinear elliptic degenerate anisotropic equations, Mat. Stud. 47 (2017), No. 1, 59–70. CrossRef

[12] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, United Kingdom Edition, Academic Press, New York-London, 1980.

[13] A.A. Kovalevsky, On a sharp condition of limit summability of solutions of nonlinear elliptic equations with L1-right-hand sides, Ukr. Math. Bull. 2 2005, No. 4, 507–545.

[14] A.A. Kovalevsky and Yu.S. Gorban, Degenerate anisotropic
variational inequalities withL1-data, preprint. Donetsk. IAMM NAS of Ukraine. 2007. 92 с.

[15] A.A. Kovalevsky and Yu.S. Gorban, On T -solutions of degenerate anisotropic el- liptic variational inequalities with L1-data, Izv. Math. 75 (2011), No. 1, 101–160 (Russian). CrossRef

[16] A.A. Kovalevsky and Yu.S. Gorban, Solvability of degenerate anisotropic elliptic second-order equations with L1-data, Electron. J. Diﬀerential Equations (2013), No. 167, 1–17.

[17] A. Kovalevsky and Yu. Gorban, Conditions of solvability of the Dirichlet problem for degenerate anisotropic elliptic second-order equations with L1-data, Tr. Inst. Prikl. Mat. Mekh. 26 (2013), 76–94.

[18] F.Q. Li, Nonlinear degenerate elliptic equations with measure data, Comment. Math. Univ. Carolin. 48 (2007), No. 4, 647–658.

[19] J.-L. Lions, Quelques m´ ethodes de r´ esolution des probl` emes aux limites non lin´ eaires, Dunod, Paris, 1969 (French).